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Research Overview 

Given that an accurate model for predicting rail fracture due to cyclic fatigue loading has thus 

eluded the research community, we proposed to 1) modify and deploy our robust multi-scale model 

for predicting crack growth in rails due to cyclic fatigue loading; 2) validate that model against 

experimental results previously obtained within our own labs; and 3) make our model accessible 

to on-site track engineers, thereby mitigating the likelihood of train derailments caused by track 

fracture within the U.S.  
 

 
Figure 1: Rail head in experimental apparatus 

 

We note herein that our model, which deploys a multiscale finite element method previously 

developed by our research group, together with a nonlinear viscoelastic cohesive zone model, to 

predict fatigue-induced crack growth in rails.  Furthermore, we have over the previous decade 

performed the most complex set of multiaxial laboratory fatigue experiments on previously in-

service rails with internal defects ever undertaken within the U.S.  (Fig. 1).  Our objective then is 

to develop via a newly constructed set of simplified railhead experiments to determine the material 
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properties necessary to deploy our multiscale computational algorithm and determine the accuracy 

of our computational approach versus the complex multiaxial rail experiments we performed over 

the previous decade (funded by MxV Rail).  

 We have now been performing these tests for nine years, during which we have successfully 

tested five rails over several million cycles [Whetstone et al., 2023], thereby resulting in the crack 

evolution diagram shown in Fig. 2. 
 

 

Figure 2: Results of multiaxial fatigue tests performed on rails 

 

 If our model proves to be accurate compared to the previously performed experiments, then 

we believe that we will have significant evidence of its veracity as a tool for predicting fracture in 

rails subjected to long term cyclic fatigue. 

 We will then utilize our model to predict crack growth due to fatigue loading in rails as a 

function of three primary variables: initial crack location within the railhead; initial crack size 

within the railhead; and initial crack orientation within the rail head.  We note that these three 

geometric parameters are readily determined by field engineers who perform nondestructive 

evaluations of in-service rails using acoustic emitters. 
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Currently, when a rail engineer detects an internal flaw within the railhead it is standard 

practice to remove the rail from service immediately.  However, the rail may actually have 

significantly more life before the rail needs to be removed from service, and our model is intended 

to supply that information ‘on the fly’ to field engineers, thereby oftentimes allowing the rail to 

remain in service.  Such an approach has previously been developed within commercial aviation, 

we might add – to great success – thereby making commercial air travel the safest means of 

transport in history.  This then is our objective within the rail industry.  If successful, our model 

will then simultaneously increase safety and decrease the cost of rail transport. 

 

 

Figure 3: Photo of fracture surface of Rail#7, fractured after 18M load cycles 
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Modeling Approach 

 

Figure 4: Image depicting our cohesive zone model 

 

Our nonlinear cohesive zone model [1,2] is described by the following nonlinear traction-

displacement law:  

 
(1) 

  
where  

• t
i 
are the components of the crack-opening traction vector  

• u
i
 are the components of the crack opening displacement vector  

• D(t) is the cohesive zone relaxation modulus  

• α(t) is the current value of the interfacial damage parameter, which is modeled by a damage 

evolution law. 

• λ(t) is the Euclidean norm of the cohesive zone interfacial displacement vector  

0
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The evolution of damage, α(t), is modeled via the following damage evolution law: 

md A
dt
α λ=       (2) 

where A and m are material properties to be determined by the experimental program in our 

companion research effort [CRR-2024-1]. 

Results to Date 

To demonstrate the sensitivity of the cohesive zone model to the material parameters 

imbedded within the model, we show two results below.  In Fig. 5, the relation between the 

parameter A and number of cycles to failure of the cohesive zone is depicted.  In Fig. 6, the relation 

between the parameter m and number of cycles to failure of the cohesive zone is depicted 

 

Figure 5: Relation between CZ-model material parameter-A and the number of cycles to failure 

of a single element within rail steel 

 



 
 

10 
 

 

Figure 6: Relation between CZ-model material parameter-m and the number of cycles to failure 

of a single element within rail steel 

 

The above fracture model will be deployed within our multiscale nonlinear finite element 

computational algorithm [3-10] to predict crack growth in rail subjected to complex long-term 

fatigue loading, as described in our companion annual report [CRR-2024-1]. As an example, Fig. 

7 shows a depiction of a typical evolution of the traction-traction graph, with crack extension 

predicted on the fifth cycle of loading. 

The above fracture model has been deployed within our multiscale nonlinear finite element 

computational algorithm [3-10], and we are now utilizing it to predict crack growth in rails 

subjected to complex long-term fatigue loading. 

 The two-way coupled multiscale computational algorithm that is deployed herein is based on 

the prior works of Allen and co-workers [Souza et al., 2008, Souza et al., 2009, Souza and Allen, 

2009, Souza and Allen, 2012, Allen et al., 2017a,b,c, Little et al., 2018]. In this approach, we 

model the response of the rail head on two simultaneous length scales (Fig. 8), wherein the larger 

scale is the scale of the rail cross-section, and the smaller scale is on the length-scale of the metal 

grains. These two length scales are coupled to one another both ways, thereby rendering a two-

way coupled multiscale model. Furthermore, explicit evolutionary cracking is predicted on the 
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smaller length scale using a cohesive zone model [Allen and Searcy 2000, Foulk et al. 2000, Allen 

and Searcy 2001a, 2001b].  

 

 
Figure 7: Typical evolution of the traction-displacement curve during cyclic fatigue loading 

 

 

Figure 8: Depiction of two-way coupled computational model for predicting crack growth under 

cyclic fatigue loading 
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To account for this two-way coupling between the local and global length scales, the multi-

scale algorithm utilizes a time marching scheme. On the first time-step, it is assumed that the 

structural component is undamaged, and a global analysis is performed for an increment of loading, 

wherein it is assumed that the component is initially spatially homogeneous at the global length 

scale. The globally calculated stresses obtained from this first loading increment are then applied 

to each and every local scale representative volume element (RVE), thereby producing spatially 

varying predicted states in the evolutionary cracking in each RVE, with greater cracking occurring 

in those RVE’s that undergo greater global stresses or contain pre-existing defects. This process 

causes the local analyses to be dependent on (coupled to) the global analyses due to the spatial 

variation in the global scale stresses, thereby accounting for the differences caused by spatially 

varying wheel distributions, as well as spatially varying crack locations within the rail head.   

Once the local analyses have been performed within each local RVE on the given time step, 

the predicted results are then utilized to construct the homogenized tangent modulus within each 

RVE, and this modulus varies spatially due to the different state of cracking predicted within each 

RVE. Note that the solution for each RVE at the local scale is obtained using the finite element 

method, thus resulting in one finite element mesh for each RVE at the local scale. The total number 

of finite element meshes is thus one plus the number of local RVE’s. Applying this procedure 

repeatedly within a time marching scheme produces the desired two-way coupled multi-scaling 

algorithm. The evolving nonlinearity due to the evolution of cracking in the calculations is 

accounted for using Newton iteration (Little et al. 2018). 

The two-way coupled multiscale finite element method is used to model the effect of the 

imposed loading profile on the spatial and temporal variation in fatigue crack nucleation at the 

microstructural scale. As described above, in the calculations the transverse section of the rail is 

modeled at the global scale while at the local scale, a multiple grain microstructure characterized 

by the distribution of grain boundaries (or cohesive surfaces) is constructed.  
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Figure 9: (a) Crack propagation for different angles, (b) Crack growth rate for different angles 

 

Figure 9 illustrates the relationship between crack length and cyclic load (Figure 9(a)) as well 

as the crack growth rate as a function of crack angle (Figure 9(b)) for different angles. 

 

 

Figure 10: Crack propagation for different loadings 
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Figure 10 illustrates the relationship between crack length and the number of cycles under 

different cyclic loading magnitudes, with each curve representing how crack length evolves as the 

material is subjected to cyclic loading at specific stress levels. We have vertical cracks (θ = 90°) 

in all cases. The progression of crack propagation is illustrated for various initial crack sizes in Fig. 

11. We have vertical cracks (θ = 90°) in all cases.   

 

 

Figure 11: Crack propagation is illustrated for various initial crack sizes 

 

Based on these initial results, we are optimistic that this relatively new and unique approach 

to modeling rail head fracture due to long-term cyclic fatigue will produce a tool capable of 

dramatically improving our ability to assess track worthiness of rails with internal imperfections. 
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